1-5 Videos Guide

1-5a

- Equations of a line in space parallel to the vector $\mathbf{v}=\langle a, b, c\rangle$ and containing the point $\left(x_{0}, y_{0}, z_{0}\right)$
- Vector equation: $\mathbf{r}(t)=\left\langle x_{0}, y_{0}, x_{0}\right\rangle+t\langle a, b, c\rangle$
- Parametric equations: $x=x_{0}+a t, y=y_{0}+b t, z=z_{0}+c t$
- Symmetric equations: $\frac{x-x_{0}}{a}=\frac{y-y_{0}}{b}=\frac{z-z_{0}}{c}$

Exercise:

- Find a vector equation and parametric equations for the line through the point $(6,-5,2)$ and parallel to the vector $\left\langle 1,3,-\frac{2}{3}\right\rangle$.

1-5b

- Vector equation of a line segment from $P\left(x_{0}, y_{0}, z_{0}\right)$ to $Q\left(x_{1}, y_{1}, z_{1}\right)$: Let $\mathbf{r}_{0}(t)=\left\langle x_{0}, y_{0}, z_{0}\right\rangle$ and $\mathbf{r}_{1}(t)=\left\langle x_{1}, y_{1}, z_{1}\right\rangle$

○ $\mathbf{r}(t)=(1-t) \mathbf{r}_{0}+t \mathbf{r}_{1}, \quad 0 \leq t \leq 1$

1-5c

- Equation of a plane with normal vector $\mathbf{n}=\langle a, b, c\rangle$ and containing the point (x_{0}, y_{0}, z_{0})

$$
\text { - } a\left(x-x_{0}\right)+b\left(y-y_{0}\right)+c\left(z-z_{0}\right)=0
$$

Exercises:

- Visually represent the portion of the plane $3 x+4 y+6 z=12$ that is in the first octant.

1-5d

- Find an equation of the plane through the points $(3,0,-1),(-2,-2,3)$, and $(7,1,-4)$.

1-5e

- Find an equation of the plane that passes through the point $(6,-1,3)$ and contains the line with symmetric equations $x / 3=y+4=z / 2$.
- Where does the line through $(-3,1,0)$ and $(-1,5,6)$ intersect the plane $2 x+y-z=-2$?

1-5f

- (a) Find parametric equations for the line of intersection of the planes and (b) find the angle between the planes.
$x+y+z=1, \quad x+2 y+2 z=1$

1-5g

- Distance from a point $\left(x_{1}, y_{1}, z_{1}\right)$ to a plane with equation $a x+b y+c z+d=0$

$$
\bigcirc \quad D=\frac{\left|a x_{1}+b y_{1}+c z_{1}+d\right|}{\sqrt{a^{2}+b^{2}+c^{2}}}
$$

Exercises:

- Find the distance from the point $(-6,3,5)$ to the plane $x-2 y-4 z=8$.

1-5h

- Find the distance between the skew lines with the given parametric equations.

$$
\begin{array}{lll}
x=1+t & \text { and } & x=1+2 s \\
y=1+6 t & & y=5+15 s \\
z=2 t & z=-2+6 s
\end{array}
$$

